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 The two-dimensional Navier-Stokes equations were used for the solution of laminar vortex
 shedding behind a circular cylinder at a Reynolds number of 106 using the finite element
 technique .  Streamlines ,  equivorticity lines and filament lines have been used for the wake
 visualization ,  while the pressure distribution in the wake is presented in the form of
 isobars .  Useful conclusions have been drawn from the superposition of dif ferent flow
 visualization patterns ,  a technique used extensively herein .  The strengths of the laminar
 vortices were calculated at various locations from the vorticity distribution ,  confirming the
 hypothesis that maximum strength occurs at the end of the formation region .  A vorticity
 balance in the cylinder wake was conducted ,  comparing the circulation influx into the wake
 over a period and the strength of the vortices .  The time-dependent streamwise fluid
 velocities were calculated from the present simulation at various points in the wake ,  and
 are presented on the same diagram with velocities measured experimentally at similar
 conditions .  The validity of alternative definitions for the vortex formation length was
 examined and the velocity and displacement of the newly formed vortex as function of
 time was calculated .  ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 V ORTEX SHEDDING BEHIND A CIRCULAR CYLINDER  is a complicated flow phenomenon which
 has proved a challenging area for researchers over a long number of years .  In the
 fifteenth century Leonardo da Vinci sketched a double row of vortices in the wake of a
 bluf f body .  Strouhal (1878) demonstrated that the dimensionless frequency ,   fd / U ,
 remains constant over a wide range of Reynolds numbers ,  while von Ka ́  rma ́  n (1911)
 replaced the actual vortex street with a double row of point vortices and proposed a
 stability criterion for its existence .  Various investigators continued the research on
 vortex shedding behind a bluf f body ,  and many of them focused their attention on low
 Reynolds numbers ,  where the phenomenon is less complicated due to the absence of
 turbulence .  Moreover ,  the increase of power of digital computers made possible the
 numerical solution of the phenomenon ,  from the integration of the Navier-Stokes
 equations .

 Tritton (1959) investigated experimentally the phenomenon of laminar vortex
 shedding in water ,  and reported a transition in the mechanism of vortex shedding at
 Re  5  100 which became a strong source of debate .  Zdravkovich (1969) performed flow
 visualization experiments in air and reported the absence of dye in the cores of the
 vortices at the side of the cylinder where the dye had been injected .  Gerrard (1978)
 conducted a detailed flow visualization study of vortex street wakes at low Reynolds
 numbers and found a discontinuity in the time taken for a vortex to accelerate to its
 final convective velocity at Re  5  100 ,  and ,  most importantly ,  indicated a strong
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 transition in the strength of the shed vortex at this Reynolds number .  Perry  et al .  (1982)
 examined experimentally the instantaneous streamline and streakline patterns of the
 vortex street wake behind a circular cylinder and introduced critical points ,  where the
 slopes of the streamlines become indeterminate .  Flow visualization experiments
 conducted by Tritton (1959) ,  Gerrard (1978) and Williamson (1989) reveal that even at
 very low Reynolds numbers the vortex lines have a bowed appearance and the vortices
 are shed from the cylinder at a slanted angle .  Karniadakis & Triantafyllou (1989) found
 numerically a continuous variation of the Strouhal number with the Reynolds number
 at Re between 50 and 240 which led to the conclusion that discontinuities in the
 two-dimensional flow as found by Tritton seem unlikely .  Green & Gerrard (1991) used
 an optical interferometer for the visualization of the wake behind a circular cylinder
 moving in a water tank .  From the very small deformation of the free surface they
 calculated the strength and age of the vortices as functions of the distance from the
 cylinder .  More recently (1993) the same researchers measured the vorticity and shear
 stress distributions behind a circular cylinder at Reynolds numbers between 73 and 226 ,
 and they used the vorticity distribution for the determination of the vortex strength in
 the near wake .  In addition ,  they proposed a vortex-shedding mechanism at low
 Reynolds numbers ,  dif ferent from that suggested by Gerrard (1966) at higher Reynolds
 numbers .

 With the advent of digital computers ,  various computational solutions of the
 phenomenon have been presented in the ‘‘stable range’’ ,  where the vortex street wake
 is laminar .  Most of them are based on the two-dimensional Navier – Stokes equations
 and they employ finite dif ference or finite element schemes .  Jordan & Fromm (1972) ,
 Swanson & Spaulding (1978) and Franke  et al .  (1990) used the finite dif ference method
 for the numerical solution of unsteady flow around a circular cylinder ,  while Smith &
 Brebbia (1977) ,  Gresho  et al .  (1980) ,  Eaton (1987) ,  Karniadakis & Triantafyllou (1989)
 and Anagnostopoulos (1989) favoured the finite element technique .  The numerical
 solutions provide a good description of the flow parameters throughout the solution
 domain ,  a task which is dif ficult to be accomplished experimentally ,  especially in
 unsteady flows .  However ,  their accuracy depends on various factors such as the method
 of solution ,  the mesh refinement and the boundary conditions .  A point of interest is
 that the computed stream function diagrams are in disagreement with the experimental
 observations by Perry  et al .  (1982) .  The experimental observation by Perry  et al .
 suggests that the so called ‘‘centres’’ and ‘‘saddles’’ of two shed vortices coexist ,  while
 the streamline patterns obtained numerically show the centre and saddle of a shedding
 vortex disappearing before a new vortex is shed .  Moreover ,  since the flow pattern
 behind a circular cylinder exhibits three-dimensional chracteristics even at very low
 Reynolds numbers [just over 64 according to Williamson (1989)] ,  the validity of
 two-dimensional numerical models has been questioned .

 In the present study ,  although the streamlines and the filament lines were used
 extensively for the interpretation of flow phenomena associated with vortex shedding ,
 great importance was given to the equivorticity lines .  The reason for favouring the
 equivorticity lines is twofold ;  the instantaneous centres of the vortices are the points
 where the absolute values of vorticity becomes maximum ,  and the strength of the
 vortices can be calculated from the vorticity distribution .  Moreover ,  the pressure
 distribution in the wake is presented in the form of isobars .  For better interpretation of
 the information carried by dif ferent flow parameters and for the determination of the
 relevance between the characteristic lines which describe a flow field ,  the contours of
 two dif ferent field variables at the same time instant were plotted on the same graph .
 The time history of fluid velocities in the streamwise direction is depicted at some
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 points in the wake ,  while mean velocities and r . m . s .  values of velocity fluctuation over a
 shedding cycle are also presented .

 2 .  THE NUMERICAL SOLUTION

 2 . 1 .  T HE  C OMPUTATIONAL  M ETHOD

 The two-dimensional Navier-Stokes equations were transformed ,  by eliminating the
 pressure ,  into a pair of equations containing the stream function ,      ,  and the vorticity ,
 z  ,  as field variables .  For the calculation of pressure throughout the flow field a third
 equation of the Poisson type is available .  The present formulation of the Navier-Stokes
 equations was favoured over the formulation in terms of primitive variables ,  because
 the streamlines and the equivorticity lines can be obtained directly from the nodal
 values of      and  z  ,  and simple three-node triangular elements can be used ,  since
 continuity only of the field variables at the element interfaces is required ( C 0

 continuity) .  The numerical solution of the problem was performed at Re  5  106 using
 the Galerkin finite element method .  The nodal values of      and  z   were calculated at
 each time step and the two components of the fluid velocity ( u  and  y  ) were determined
 from the values of      at the nodal points of the solution domain .  Having calculated the
 values of  u  and  y    throughout the flow domain Poisson’s equation was solved to yield
 the nodal values of pressure .  The main features of the procedure followed herein have
 been described in detail by Anagnostopoulos (1989) .

 2 . 2 .  T HE  C OMPUTATIONAL  M ESH   AND  B LOCKAGE  E FFECTS

 The finite element mesh used for the solution is depicted in Figure 1 .  It contains 5  801
 nodes and 11  244 three-node triangular elements .  The solution domain extends five
 cylinder diameters upstream from the cylinder ,  10 diameters above and below the
 cylinder and 22 diameters downstream from the cylinder .  The refinement of the mesh
 was increased behind the cylinder where the vortices are formed and reduced far from
 the cylinder in the cross-flow direction for reasons of economy .  The solution domain
 was extended considerably above and below the cylinder in order to reduce the
 numerical blockage ef fect and obtain a numerical solution approximating as much as
 possible flow conditions in an unbounded flow field .  As reported by Chilukuri (1987) ,
 Karniadakis & Triantafyllou (1989) and Anagnostopoulos (1994) ,  the truncation of the
 solution domain in the cross-flow direction has as ef fect the increase of the ef fective
 approaching velocity .  For correction of blockage ef fects Allen & Vincenti (1944) have
 proposed the formula quoted by Roshko (1961) ,

 U
 U 9

 5  1  1  1 – 4 C 9 D S d
 h
 D  1  0 ? 82 S d

 h
 D 2

 ,  (1)

 where  U  and  U 9  are the corrected and real values of the approaching stream velocity ,
 C 9 D   is the drag coef ficient without the blockage correction ,  and  h  the width of the
 passage .  The validity of formula (1) to Reynolds number in the stable range has been
 confirmed by Anagnostopoulos (1994) .  From previous solutions in the area of
 Reynolds number considered ,   C 9 D   was found to be approximately equal to 1 ? 30 ;
 therefore ,  for  d  / h  5  0 ? 05 ,  equation (1) yields  U  / U 9  5  1 ? 018 and the ef fect of blockage
 on the freestream velocity is small .  The cylinder diameter was set at 1 ? 6  mm ,  equal to
 that used in the experiment ,  the freestream velocity was 0 ? 066  m / s ,  and the fluid used
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 Figure 1 .  The finite element mesh .

 was water with kinematic viscosity  …  5  10 2 6  m 2 / s ,  yielding a Reynolds number equal to
 106 .

 2 . 3 .  B OUNDARY  C ONDITIONS   AND  S OLUTION  P ROCEDURE

 The vorticity throughout the inflow and the upper and lower boundaries was set equal
 to zero .  At the outflow boundary the boundary condition was approximated by the
 formula  Û z  / Û n  5  0 .  At the point  W  on the cylinder surface the vorticity was calculated
 from

 z W  5
   W  2    I

 D n 2  2
 z I

 2
 ,  (2)

 where  I  is a point of the flow field lying on the normal to the cylinder through  W ,  at a
 distance  D n  from point  W .

 The values of the stream function at the inflow boundary vary linearly from  2 1 – 2 Uh  at
 the lowermost point to  1 – 2 Uh  at the uppermost .  The upper and lower boundaries are
 streamlines ,  therefore the value of      was set equal to  1 – 2 Uh  along the upper boundary
 and  2 1 – 2 Uh  along the lower boundary .  The value of      on the cylinder surface can be
 evaluated from the continuity of pressure along the cylinder boundary .  Along the solid
 boundary the equation of motion due to the no-slip condition takes the form

 Û p

 Û s
 5  2 r …

 Û z

 Û n
 ,  (3)
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 where  s  is the direction along and  n  normal to the boundary .  The continuity of pressure
 along the cylinder surface expressed in mathematical terms dictates that

 R  Û z

 Û n
 d s  5  0 .  (4)

 If  W  denotes a point on the solid boundary and  I  a point on the normal to the
 boundary through  W  at a distance  D n ,  equation (4) can be written as

 R  z I  2  z W

 D n
 d s  5  0 .  (5)

 Substitution of  z W   from equation (2) in equation (5) after some manipulation yields

 R  [ D n 2 z I  1  2(   I  2    W  )]  d s  5  0 .  (6)

 Consequently ,  if the values of    I   and  z I   have been calculated at a time step ,  the
 value of the stream function on the cylinder surface    W   can be derived from integral
 (6) ,  to be used as boundary condition at the following time step .  At the outflow
 boundary ,  the boundary condition used was  Û    / Û n  5  0 ,  where  n  is the direction
 normal to the boundary .  This boundary condition is not absolutely correct ,  but ,  since
 the boundary is far downstream from the cylinder ,  it does not seem to influence the
 phenomena near the cylinder .

 The pressure throughout the flow field was determined from the solution of Poisson’s
 equation .  The boundary conditions for pressure at the outer boundaries are the same
 as for the vorticity .  On the cylinder surface the boundary condition  Û p  / Û n  was derived
 as follows .  The equation of motion along the radial direction on the cylinder surface
 due to the no-slip condition is simplified to

 2
 1
 r

 Û p

 Û n
 1  … S Û

 2 y  r

 Û
 2 s

 1
 Û

 2 y  r

 Û
 2 n
 D  5  0 ,  (7)

 where  y  r   is the component of the fluid velocity in the radial direction ,   s  is the tangential
 direction on the cylinder surface and  n  is the outward normal .  The derivative of
 vorticity ,

 Û z

 Û s
 5

 Û
 2 y  r
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 2
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 2 y  s

 Û s  Û n
 ,

 from the continuity equation  Û y  s  / Û s  1  Û y  r  / Û n  5  0 becomes

 Û z

 Û s
 5
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 2 y  r
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 1
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 2 y  r

 Û
 2 n

 .  (8)

 From equations (7) and (8) the boundary condition  Û p  / Û n  was derived as

 Û p

 Û n
 5  m

 Û z

 Û s
 .  (9)

 The initial values of the vorticity throughout the flow field were set equal to zero .  At
 each time step the nodal values of the stream function ,  vorticity and pressure were
 calculated .  As the computation proceeded ,  a pair of symmetric vortices started to form
 behind the cylinder ,  continually growing in size under the action of viscosity .  When the
 size of the standing vortices was almost stabilized ,  very small asymmetries were
 detectable in the wake caused by round-of f errors ,  which increased eventually with
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 time .  The shedding process may be accelerated by introducing at a time step a small
 disturbance in the flow ,  usually accomplished by adding a small amount of vorticity at a
 nodal point on the wake axis .  The computation continued until the wake became fully
 periodic ,  displaying the characteristics of a completely established vortex street .

 3 .  DESCRIPTION OF THE FLOW FIELD

 The description of the flow field is performed by plotting the streamlines ,  the
 equivorticity lines and the filament lines or streaklines .  In addition ,  the isobars ,  which
 are defined as the lines of equal pressure ,  illustrate the pressure distribution throughout
 the flow field .  The streamlines ,  equivorticity lines and isobars can be generated at each
 time step from the nodal values of the stream function ,  vorticity and pressure obtained
 from the numerical solution .  The filament lines are defined as the locus of positions of
 massless particles which have emerged at a specified point in the flow field .

 The vorticity throughout the domain has been nondimensionalized from the formula
 z  *  5  z  d / 2 U .  The numbers of the vorticity contours are displayed in Figure 5 (to be
 discussed later) ,  and the associated dimensionless vorticity values are given in Table 1 .

 The pressures derived numerically have been rendered nondimensional from the
 formula  p *  5  p  /  1 – 2 r U 2 .  The numbers of the pressure contours corresponding to the
 dimensionless pressure values of Table 2 are presented later in Figure 24 .

 4 .  VORTICITY DISTRIBUTION IN THE LAMINAR WAKE

 The determination of the vorticity distribution in the vortex street wake is of primary
 importance for the following reasons .  The centres of the vortices are the points where
 the absolute values of vorticity becomes maximum ,  therefore the equivorticity lines
 provide a powerful tool for the determination of the vortex street geometry .  In
 addition ,  the strengths of the vortices can be calculated ,  and if multiplied by the
 shedding frequency the rate at which circulation is carried by the wake can be
 determined .

 T ABLE  1
 Vorticity contour values

 Contour number  z  *  Contour number  z  *

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

 2 5 ? 0
 2 3 ? 0
 2 2 ? 0
 2 1 ? 75
 2 1 ? 40
 2 1 ? 30
 2 1 ? 20
 2 1 ? 10
 2 1 ? 0
 2 0 ? 8
 2 0 ? 6
 2 0 ? 4
 2 0 ? 2
 2 0 ? 1
 2 0 ? 05
 2 0 ? 02

 2 1
 2 2
 2 3
 2 4
 2 5
 2 6
 2 7
 2 8
 2 9

 2 10
 2 11
 2 12
 2 13
 2 14
 2 15
 2 16

 5 ? 0
 3 ? 0
 2 ? 0
 1 ? 75
 1 ? 40
 1 ? 30
 1 ? 20
 1 ? 10
 1 ? 0
 0 ? 8
 0 ? 6
 0 ? 4
 0 ? 2
 0 ? 1
 0 ? 05
 0 ? 02
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 T ABLE  2
 Values of pressure contours

 Contour
 number  p *

 Contour
 number  p *

 Contour
 number  p *

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 ? 80
 0 ? 70
 0 ? 60
 0 ? 50
 0 ? 40
 0 ? 30
 0 ? 20
 0 ? 10
 0 ? 095
 0 ? 090

 2 1
 2 2
 2 3
 2 4
 2 5
 2 6
 2 7
 2 8
 2 9

 2 10
 2 11
 2 12
 2 13
 2 14

 2 1 ? 0
 2 0 ? 9
 2 0 ? 8
 2 0 ? 7
 2 0 ? 6
 2 0 ? 5
 2 0 ? 4
 2 0 ? 35
 2 0 ? 30
 2 0 ? 25
 2 0 ? 20
 2 0 ? 15
 2 0 ? 10
 2 0 ? 05

 1 9
 2 9
 3 9
 4 9
 5 9
 6 9
 7 9
 8 9
 9 9

 10 9
 11 9
 12 9
 13 9
 14 9

 0 ? 070
 0 ? 065
 0 ? 060
 0 ? 055
 0 ? 050
 0 ? 045
 0 ? 040
 0 ? 035
 0 ? 030
 0 ? 025
 0 ? 020
 0 ? 015
 0 ? 010
 0 ? 005

 4 . 1 .  T HE  E QUIVORTICITY  L INES  T HROUGHOUT   THE  S OLUTION  D OMAIN

 The equivorticity lines throughout the solution domain at  t  / T  5  0 are depicted in
 Figure 2 .  As origin of time was taken the instant at which the fluctuating lift force on
 the cylinder becomes zero ,  turning from positive to negative .  Eight vortices are shown ,
 four on each side of the wake axis .  The minimum absolute vorticity contour with end
 points on the cylinder encompasses vortices I and III ,  rendering the exact determina-
 tion of the vortex boundaries dif ficult .  Vortex IV which is still surrounded ,  together
 with vortex II ,  by the outermost vorticity contour ,  is about to be detached .  When all
 the equivorticity contours of a vortex have just been detached to form closed loops ,  the
 vortex appears in elongated form ,  with the longer axis almost perpendicular to the
 wake centreline .  Then ,  it acquires a rounder shape as it moves downstream ,  more
 similar to that of an Oseen vortex .  Another interesting feature is the low absolute
 vorticity contours drawn towards the adjacent vortex of opposite sign in the
 downstream direction ,  which has as ef fect the cancellation of vorticity at the vortex
 boundaries .  This is the situation occurring between the pairs of vortices IV – V ,  V – VI
 and VI – VII .  The vorticity cancellation phenomenon is interpreted from the reduction
 of size of the ‘‘tail’’ formed by the vorticity contour closest to the outermost ,  in the

I

II

III

IV

V

VI

VII

VIII

 Figure 2 .  Equivorticity lines throughout the solution domain at  t  5  0 .
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 sequence of vortices IV to VI ;  although in vortex IV it almost extends to the vortex
 boundary ,  in vortex VI it has disappeared .  The measurement of vorticity in the wake of
 a cylinder is a formidable task ,  and the relevant investigations known to the author are
 those by Green (1989) and by Okude & Matsui (1990) .  Green confined his
 measurements to a small part of the wake near the cylinder at Reynolds numbers
 between 73 and 226 while Okude & Matsui performed a detailed vorticity measure-
 ment at a great distance behind the cylinder at Re  5  140 .  Green’s vorticity distribution
 at Re  5  100 agrees in general terms with the results of the present solution at
 equivalent time steps ,  although dif ferences are present in some cases .  On the other
 hand ,  the equivorticity contours presented by Okude and Matsui are in close
 agreement with those of the present computation .  This detailed investigation confirmed
 the numerical result found herein ,  according to which the outer vorticity contour of a
 vortex is drawn close to the downstream vortex of opposite vorticity ,  causing a local
 distortion of the equivorticity lines and leading to vorticity cancellation .

 4 . 2 .  S UPERPOSITION   OF  S TREAMLINE  P ATTERN   ON   THE  E QUIVORTICITY  L INES

 The streamlines over one half of a shedding cycle were superimposed on the
 equivorticity lines in Figure 3 .  It can be clearly seen that ,  near the cylinder ,  the centres
 of the vortices do not coincide with the rotating masses of fluid interpreted in the form
 of closed streamlines ,  which are surrounded by instantaneous alleyways .  As the
 vortices are convected downstream the closed streamline region decreases in size ,
 whereas the number of alleyways increases .  In frame 3(c) closed streamline loops of
 the shedding vortex are not detectable any more .  Figure 3 also provides a good
 interpretation of the ‘‘vortex splitting’’ process detected by Green & Gerrard (1993) .  In
 Figure 3 (a) the separating streamline emerging from the upper part of the cylinder
 divides the fluid entering into the wake above the cylinder from that drawn from the
 lower part by the alleyways .  The alleyways transfer positive vorticity fluid from the
 lower part of the cylinder across the wake ,  causing reduction of the value of the
 negative vorticity prevailing locally .  This reduction of vorticity is manifested as the
 local distortion of the vorticity contours ,  which seem to approach their opposite part
 farthest from the cylinder in the form of a neck .  Eventually the two opposite parts of
 the equivorticity line come into contact and the contour is split in two parts :  a closed
 loop associated with the shedding vortex and a line starting and ending on the cylinder .

 4 . 3 .  V ORTEX  S TRENGTH   AND  V ORTICITY  B ALANCE

 The description by von Ka ́  rma ́  n of the periodic wake behind a bluf f body in terms of
 point vortices is well known .  Various researchers (Hooker 1936 ;  Schaefer & Eskinazi
 1958 ;  Grif fin & Ramberg 1974) improved this model by considering viscous ef fects .  The
 ideal vortices introduced by von Ka ́  rma ́  n were replaced by Oseen vortices throughout
 the flow field or in the neighbourhood of the points under consideration .  The
 characteristic parameters of the vortex street such as the strength and spacing of the
 vortices are obtained by matching measured velocity profiles with the appropriate
 models .  Although the results of these models are considered as reliable in general
 terms ,  the models are based on assumptions ,  the most important of which is that the
 vortices dif fuse as they are convected downstream as if they were isolated .  The
 strengths of the vortices are considered constant ,  while in reality there is a reduction of
 vortex strength with downstream distance resulting from the mutual cancellation of
 opposite-sign vorticity .  The vortex strength obtained from each model is multiplied by
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(a) t /T = 0

(b) t /T = 1/8

(c) t /T = 2/8

(d) t /T = 3/8

 Figure 3 .  Equivorticity lines superimposed on the streamline pattern in the near wake separated by a time
 interval of  T  / 8 .
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 the shedding frequency to determine the rate at which vorticity is carried away by the
 wake .  The rate of vorticity generation by the cylinder is determined by boundary layer
 principles in conjunction with velocity or base-pressure measurements .  The dif ference
 between the vorticity generated and that contained in the vortices is assumed to have
 been cancelled by vorticity of the opposite sign .  Birkhof f & Zarantonello (1957)
 expressed the rate of vorticity contained in the vortices as

 K  5  G f  5  L U 2 ,  (10)

 where  G   is the circulation of a vortex ,   f  the shedding frequency and  L   a dimensionless
 parameter .  Berger (1964) found  L  5  0 ? 395 at Re  5  65 and Re  5  151 ,  while Grif fin &
 Ramberg (1974) report  L  5  0 ? 45 for Re  5  144 .  Berger & Wille (1972) quote the ratio of
 the vorticity lost by cancellation to the vorticity generated by the cylinder over a wide
 range of Reynolds numbers ,  as found by various investigators .  For Reynolds numbers
 in the stable range ,  the reported vorticity surviving in the vortices is 40% of the
 vorticity generated by the cylinder .

 Okude & Matsui (1990) from their vorticity measurements calculated the vortex
 strength from the well-known relationship between circulation and vorticity .  The
 measurements of Okude & Matsui (1990) confirm the continuous decrease of vortex
 strength with downstream distance from the cylinder .  Green & Gerrard (1991)
 conducted an optical interferometric study for the visualization of the wake behind a
 circular cylinder at low Reynolds numbers .  They used an optical interferometer in
 order to measure the very small free surface displacements in the wake of a cylinder
 moving in a towing tank and they derived the strength and age of the vortices from the
 free surface profiles .  They confirmed the existence of a peak in vortex strength at
 Re  5  100 which had been found previously by superposition of data from dif ferent
 studies ,  and they presented the proportion of loss of circulation for Reynolds numbers
 between 70 and 120 .  The vorticity surviving at Re around 100 was found to be 68% of
 the vorticity shed ,  much higher than the value 40% quoted by Berger & Wille (1972) .

 Apart from the experimental results mentioned previously ,  Eaton (1987) performed
 a vorticity balance in the wake of a cylinder computationally .  He considered a line
 segment perpendicular to the freestream ,  extending from the separation point  A  to the
 outer boundary  B  and calculated the amount of vorticity passing through the segment
 AB  over a shedding period  T  from the integral

 E T

 0
 E B

 A
 u z  d y  d t .  (11)

 Then he considered the distortion of the ‘‘material element’’  AB  over one and two
 shedding periods and evaluated the surviving vorticity within the areas formed from the
 contour integral of the circulation (Stokes’ theorem) .  The results of the vorticity
 balance show that only 11% of the vorticity shed in one period is cancelled during one
 period and 40% during two periods .

 The vorticity balance conducted by Eaton estimates the cancellation of vorticity in
 the same bulk of fluid as it deforms moving downstream .  The calculation of the
 strength of the vortices as they are convected downstream and the ratio of the vorticity
 lost by cancellation will be described in what follows .  For the calculation of the amount
 of the vorticity carried into the wake over a shedding period ,  equation (11) was also
 used .  The separation point  A ,  whose location on the cylinder was fluctuating ,  was
 determined at each time step .  Then the line  AB  parallel to the inflow boundary was
 drawn from point  A  to the outer boundary ,  as shown in Figure 4 .  The values of the
 vorticity  z   and the streamwise velocity  u  at the intersection of line  AB  with the
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A

B

 Figure 4 .  Definition sketch .  A denotes the separation point ,  and B lies on the upper boundary .

 element boundaries were calculated from their nodal values using linear interpolation .
 The vorticity shed from one side of the cylinder during one period normalized by  Ud
 was found equal to 5 ? 29 .

 The circulation of each vortex was calculated from the equivorticity lines throughout
 the solution domain ,  as they are displayed in Figure 2 .  The technique is based on the
 Stokes’ theorem between the vorticity and the circulation ,  namely

 G  5 E E  z  d s ,

 where  s  denotes the area around which the circulation is determined .  For the evalution
 of the circulation of each vortex the area enclosed by two consecutive equivorticity
 lines was calculated ,  and multiplied by the average of vorticity on these lines .  The total
 circulation of each vortex was calculated from the summation of partial circulations
 between neighbouring equivorticity contours .  The procedure is straightforward at some
 distance behind the cylinder where all equivorticity contours of each vortex form
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 closed loops .  For the vortices close to the cylinder ,  as boundary was regarded as the
 position where the equivorticity line with end points on the cylinder bounding the
 outermost closed vorticity loop becomes narrowest ,  as shown in Figure 5 .  This is the
 location of local maximum pressure ,  as will be explained later .  In Figure 5 the
 boundaries between vortices are marked with dashed lines .  Although the upstream
 boundaries of the vortices farthest from the cylinder can be considered as well defined ,
 there exists some arbitrariness in the definition of the upstream boundary of the vortex
 closest to the cylinder .  The calculation of the vortex strength was preformed for the
 first time when its centre was located 1 ? 5 diameters downstream from the cylinder
 centre .  Then the equivorticity lines were generated at successive short time intervals
 and the circulation of the vortex as it grows was calculated as described .  The vortex
 strength  G  ,  normalized by  π Ud ,  as a function of the distance from the cylinder is
 depicted in Figure 6 .  The vortex strength increases abruptly as the vortex grows ,
 acquiring its maximum value equal to 1 ? 23 at  x  / d  5  3 ? 05 ,  and afterwards starts to
 decrease gradually .  Therefore ,  at a specified Reynolds number ,  only the maximum
 strength value is unique ,  and when the strength of a vortex is quoted the location of its
 centre should also be indicated .  Figure 6 reveals that when  x  / d  lies between 8 ? 5 and 14 ,
 the vortex strength remains almost constant ;  the average value of  G  / π Ud  within this
 interval is 1 ? 08 and its reduction is less than 2% .  Figure 2 illustrates that the centre of
 vortex IV is located approximately at  x  / d  5  8 ? 5 ,  whereas the displacement of vortex VI
 divided by the diameter is very close to 14 .  Consequently ,  when a vortex is displaced
 from the position IV of Figure 2 to VI of the same figure ,  dif fusion of vorticity is
 prominent ,  while the amount of cancellation is small .  Green & Gerrard (1991) also
 report that the cancellation of vorticity in the range 8  ,  x  / d  ,  13 ? 5 is very small ,  a
 result which is in very good agreement with the present investigation ,  although it was
 derived from a dif ferent principle .

 Another matter of interest is the ratio of the vorticity loss by cancellation to the
 vorticity generated by the cylinder .  The exact rate of circulation carried in the wake  K s

 can be calculated only from a numerical solution .  Otherwise ,  it can be derived from the
 formula  K s  5  0 ? 5 U 2

 s  ,  where  U s   is the mean velocity at the edge of the boundary layer at
 separation .  From the Bernoulli equation ,   U s  5  U (1  2  C p b ) 1 / 2 ,  where  C p b   is the base
 pressure coef ficient .  For  U  5  0 ? 066 and  C p b  5  2 0 ? 7 ,  which are the values of the present
 computation ,   K s   was calculated equal to 3 ? 72  3  10 2 3 ,  therefore the vorticity shed in the
 wake over a period equal to 0 ? 146  s is 5 ? 44  3  10 2 4 ,  which ,  if divided by  Ud ,  yields 5 ? 16 .
 The exact value of the vorticity influx found from integral (11) was 5 ? 29 ,  the dif ference
 between the two values being only 2 ? 5% .  Consequently ,  provided that a correct value
 for  C p b   is used ,  the approximate technique for the determination of  K s   is accurate
 enough and can be used for the evaluation of vorticity influx .  The vorticity surviving
 when the vortex strength has reached the maximum value is 73% ,  while it is equal to
 65% at  x  / d  5  13 ? 5 .  The value reported by Green & Gerrard (1991) at Re  5  100 is 68% ,
 very close to the average of these two values .

 5 .  THE STREAKLINES

 The simplest and most popular technique of flow visualization is the tracing of the
 motion of fluid particles .  If dye is injected at a fixed point in the flow field ,  the locus of
 the fluid particles that passed from that point and thus have been coloured yield the
 filament lines or streaklines .  Various investigators conducted flow visualization
 experiments of vortex streets by generating streaklines .  Taneda [quoted by Van Dyke
 (1982)] ,  Perry  et al .  (1982) and Gerrard (1978) generated streaklines in water ,  while
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 Figure 6 .  Vortex strength as function of downstream distance from the cylinder .

 Koopmann (1967) ,  Zdravkovich (1969) ,  Grif fin & Ramberg (1974) and Freymuth  et al .
 (1986) used smoke for the visualization of vortex streets in air .

 5 . 1 .  S TREAKLINE  P ATTERN  T HROUGHOUT THE  D OMAIN

 The graphical representation of the streaklines obtained from a numerical solution is
 more advantageous compared to those of an experimental visualization ,  in the sense
 that dif fusion of the tracer in the working fluid does not occur .  A set of 10 streaklines ,
 all of them originating upstream from the cylinder ,  are depicted in Figure 7 at  t  / T  5  0 .
 The streaklines are numbered consecutively from 1 to 10 ,  with number 1 being given to
 the streakline originating from the lowermost point from the cylinder ,  while number

 Figure 7 .  Pattern of ten streaklines in the cylinder wake at  t  5  0 .
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 10 corresponds to that starting from its symmetric point with respect to the wake
 centreline .  Figure 7 gives good insight to the mass transfer process across wake due to
 vortex shedding .  Points emanating from the upper part of the flow field upstream from
 the cylinder find their way in the lower part of the wake and  y  ice  y  ersa .  In addition ,
 although the streakline pairs which originate farthest from the cylinder are kept at a
 distance apart in the near wake ,  they come very close to each other near the outflow
 boundary .  The filament lines 5 and 6 are depicted in Figure 8(a) .  Figure 8(a) reveals
 that the lines 5 and 6 are caught in the recirculation region and their constitutive points
 are superimposed ,  rendering the two lines indiscriminate ,  apart from a small length
 downstream from the cylinder where the two lines can be distinguished .  This is the
 reason for plotting the filament line 6 separately in Figure 8(b) .  It should be mentioned
 that the numbering of the vortices in Figures 8(b) and 9 is dif ferent from that appearing
 in the equivorticity contours pattern of Figure 2 .

 Zdravkovich (1969) using smoke as tracer in air showed a streakline caught up in the
 recirculation region ,  in which the vortices show absence of smoke in their centres .  The
 interpretation given by Zdravkovich to the phenomenon is that fluid from one side of
 the cylinder is contained in the vortices shed from the other side .  On the other hand ,
 Gerrard’s experiments (1978) in water show clearly the dye injected from one side of
 the cylinder to accumulate in the vortices of the same side .  It is evident from Figure
 8(b) that dye injected from one side of the cylinder remains in the vortices of the same
 side ,  although it can be found across the wake ,  but outside the vortex core .  The
 detailed numerical flow visualization conducted by Eaton (1987) favours this argument
 reasonably .  It seems therefore ,  that either the disturbance level in Zdravkovich’s
 experiments was high leading to spurious results as proposed by Eaton ,  or the smoke
 was injected at some distance above the cylinder .  In this case a configuration similar to
 that of Figure 8(b) can be expected ,  where it is clear that ‘‘dye’’ emerging a small
 distance above or below the cylinder does not fill the centres of the vortices .

 5 . 2 .  T HE  M ULTIPLE  F OLDING  P HENOMENON

 Figure 8 reveals that the streaklines depicted ,  after their displacement in the far wake ,
 return to the region behind the cylinder .  It is seen from Figure 8(b) for example that
 the streakline folds around vortex I ,  then after going as far as vortex II returns to the
 region behind the cylinder ;  next it reaches vortex III ,  afterwards it folds back behind
 the cylinder ,  and so on .  This situation is similar to figure 8 of Perry  et al . ,  where the
 streaklines emerge from the cylinder surface .

 For a better examination of the multiple folding phenomenon of a streakline caught
 in the recirculation region ,  the sequences of successive points of the streakline depicted
 in Figure 8(b) were plotted separately ,  in a way that the background from the previous
 foldings was eliminated .  The first point of a sequence was indicated by a half arrow ,
 while the last point with a full arrow .  The first 1000 points are depicted in Figure 9 . 1(a) .
 The line folds around vortex I ,  finds its way towards the vortex core and then moves
 back to the cylinder .  The sequence of the following 500 points is shown in Figure
 9 . 1(b) .  The points of the line are initially closely spaced ,  then jump to the crest ,  fold
 around vortex II ,  move back to the crest and return to the position of the full arrow .
 The sequence of the next 500 points depicted in Figure 9 . 1(c) moves initially back to
 the cylinder jumping over the crest ,  changes direction close to the cylinder trailing
 edge ,  and then moves again towards the cylinder .  The next point of the sequence is the
 highest of the frame .  Consequently ,  there exists a large gap between two successive
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 Figure 8 .  (a)  Streaklines 5 and 6 ;  (b)  Streakline 5 .

 points .  The next points of this cluster find their way to vortex III ,  fold back to the
 position of the lowermost arrow to the right pointing towards the cylinder ,  and then
 move back to the vortex core .  The next 200 points depicted in Figure 9 . 1(d) after an
 initial motion to the downstream direction escape from the region of vortex III and
 move backwards .  The following 100 points shown in Figure 9 . 1(e) move towards the
 cylinder ,  then to the area of vortex I and then they return close to the trailing edge of
 the cylinder .  Afterwards a great jump occurs until vortex IV is reached .  The next 300
 points depicted in clusters of 100 in Figure 9 . 2(a – c) wander around the core of vortex
 IV .  The next 100 points of Figure 9 . 2(d) escape from the core area ,  move across wake
 and they return to the core of vortex IV ,  while the following 50 points ,  as shown in
 Figure 9 . 2(e) ,  perform a similar motion .  In Figure 9 . 2(f) the following 50 points of the
 streakline escape from the core of vortex IV and find their way close to the cylinder .
 The next 21 points are depicted in frame 9 . 3(a) .  There exist substantial gaps between
 successive points ,  some points overlap on each other and the arrows used are
 inadequate to describe the sequence of the points .  The same applies for the last 30
 points depicted in Figure 9 . 3(b) .  The present computational study confirms the ‘‘finger’’
 phenomenon described by Gerrard (1978) .  In Figure 9 . 1(b) for example there exists a
 gap between the first points of the sequence and the highest point of the frame ,  which
 is filled in Figure 9 . 1(c) when the line returns to the recirculation region .

 From the foregoing discussion on Figure 9 it follows that in some cases there exist
 significant gaps between consecutive points in this representation of streaklines as a
 sequence of distinct particles .  The reason is that the part of the streakline caught in the
 recirculation region remains in the area close behind the cylinder for a rather long
 period as indicated from Figure 9 . 1(c) .  This is further substantiated from Figure 9 . 1(e) ,
 in which the particles close to the trailing edge of the cylinder are seen to have been
 introduced in the flow approximately during the time interval that produced vortex III .
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 Figure 9 . 1 .  Points 1 to 2  200 of streakline 5 .  (a)  Points 1 to 1  000 ;  (b)  Points 1  001 to 1  500 ;  (c)  Points
 1  501 to 2  000 .  (d)  Points 2  001 to 2  100 .  (e)  Points 2  101 to 2  200 .  The symbol  y u    denotes the first point of

 the sequence while the symbol  m u    the last .
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(a)
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(c)

(d)
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(f)
 Figure 9 . 2 .  Points 2  201 to 2  700 of streakline 5 .  (a)  Points 2  201 to 2  300 ;  (b)  Points 2  301 to 2  400 ;
 (c)  Points 2  401 to 2  500 .  (d)  Points 2  501 to 2  600 .  (e)  Points 2  601 to 2  650 .  (f)  Points 2  651 to 2  700 .
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(a)

(b)

 Figure 9 . 3 .  Points 2  701 to 2  752 of streakline 5 .  (a)  Points 2  701 to 2  721 ;  (b)  Points 2  722 to 2  752 .

 Figures 8(b) and 9 . 1(e) demonstrate that some of these particles find their way in the
 interior of vortex I ,  which means that the part of the streakline which is caught in the
 recirculation region is scavenged by successive vortices shed from the same side of the
 wake .  Another conclusion from Figure 9 is that in many cases the sequence of
 successive points is erratic .  In spite of the erratic position of consecutive points ,  all
 points are located on the same line ,  as shown in Figure 8(b) .  The random position of
 successive points can be interpreted with reference to Figure 10 ,  where the points are
 numbered .  In Figure 10(a) 21 points (1600 to 1621) of streakline 5 are portrayed as
 they move from the cross-wake region to the core of vortex III .  The same method of
 numbering was used in order to elucidate the random sequence of some points
 belonging to the same streakline .  The points 2700 to 2721 depicted in Figure 9 . 3(a) are
 numbered in Figure 10(b) .  From Figure 10(b) we can observe the large spacing
 between consecutive points ,  for example points 4 and 5 ,  and the very small spacing
 between others ,  such as points 6 to 12 ,  which almost overlap .

 5 . 3 .  S TREAKLINES VERSUS  E QUIVORTICITY  L INES

 The pairs of streaklines 3 and 8 and 5 and 6 superimposed on the equivorticity lines
 throughout the solution domain at  t  / T  5  0 are depicted in Figure 11 .  It is seen that
 both the equivorticity lines and the streaklines can be used for the determination of the
 vortex centres .  Moreover ,  when the filament lines approach each other connecting
 neighbouring vortices of opposite sign ,  they move along the parts of the minimum
 vorticity contours farthest from the wake axis ,  marking locally the boundary between
 the low vorticity region and the irrotational part of the flow field .

 In order to explain the relationship between the streaklines and the equivorticity
 lines in greater detail ,  the four streaklines of Figure 11 were superimposed on the
 equivorticity lines over one half of a shedding cycle in Figure 12 .  It is very interesting
 to note that when the streaklines loop around a vortex core ,  they are superimposed
 locally on an equivorticity contour .  This superposition is maintained as the vortices
 grow and move downstream .  We can assert therefore that if the streaklines originate
 close enough to the cylinder and recirculate ,  their points encompassing a vortex centre
 have approximately the same vorticity .  This is further substantiated with reference to
 Figure 11 ,  where streaklines 5 and 6 around the last three vortices are almost
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(a)

(b)

 Figure 10 .  Sequence of clusters of points of streakline 5 .  (a)  Points 1  600 to 1  621 ;  (b)  Points 2  700 to
 2  721 (same sequence as in Figure 9 . 3(a)) .

 superimposed on the vorticity contour of greater absolute vorticity .  The superposition
 of the filament lines on the equivorticity lines also gives an idea about the first
 appearance of the vortices .  In Figure 12(a) a wave in streakline 5 is detectable behind
 the cylinder ,  which has been interpreted in the flow visualization study by Gerrard
 (1978) as the first appearance of the vortices .  In Figure 12(b) the local growth of the
 vortex is accompanied by an increase in the wave appearing in streakline 5 .  In Figure
 12(c) the continuing growth of the vortex with accumulation of almost constant
 vorticity is detectable ,  while the wave in streakline 5 has taken the form of a kink ;
 whereas the further concentration of vorticity characterizing a forming vortex and the
 commencement of rolling-up can be observed in Figure 12(d) .

 6 .  THE PRESSURE DISTRIBUTION

 6 . 1 .  P RESSURE  D ISTRIBUTION  T HROUGHOUT   THE  F LOW  F IELD

 The isobars throughout the flow field at  t  / T  5  0 are presented in Figure 13 .  The
 pressure is positive upstream and negative downstream from the cylinder .  The centres
 of the vortices are detectable as minimum pressure contours in the flow field ,  while the
 absolute value of pressure in the vortex centre decreases with downstream distance of
 the vortices .  It is interesting to note the regions of very low positive pressure outside
 the negative pressure region downstream from the cylinder .  The pressure distribution
 presented in Figure 13 is very similar to those inferred from the interferometric study
 by Green & Gerrard (1991) .  The high pressure region in the present solution
 associated with stagnation is in contact with the cylinder ,  while in the study by Green &
 Gerrard is displaced in front of the body ;  the interpretation given by these researchers
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 Figure 11 .  Streakline pairs 3 – 8 and 5 – 6 superimposed on the equi-vorticity contours at  t  5  0 .

 is that the displacement of high pressure region upstream is an ef fect of surface tension
 and flow over the top of the cylinder .  The point of minimum pressure is the centre of
 the innermost contour closest to the cylinder ,  which oscillates in value and position .

 The isobars close to the cylinder at four time intervals over one half of a shedding
 cycle are depicted in Figure 14 .  In Figure 14(a) the minimum pressure contour has the
 value  2 1 .  The regions of low positive pressure are detectable outside the negative
 pressure region ,  while a pressure ‘‘hill’’ of still negative pressure starts to develop
 below the minimum pressure area ,  in the negative  y -axis .  In Figure 14(b) the low
 pressure region behind the cylinder has moved downstream while the innermost
 contour has acquired the value  2 0 ? 9 ;  a new low pressure region starts to develop at the
 bottom of the cylinder .  The high pressure region close to the cylinder has increased in
 size ,  while the values of the inner contours have become positive .  In Figure 14(c) the
 low pressure region at the bottom of the cylinder has increased in size ,  the minimum
 pressure contour being  2 0 ? 9 .  The positive pressure region has increased still further
 and is still surrounded by a negative pressure area .  Finally ,  in Figure 14(d) the low
 pressure region at the bottom of the cylinder has been further increased ;  the same
 happens with the positive pressure region closest to the cylinder ,  which now lies clearly
 outside the negative pressure region .  The pressure contours pattern of Figure 14(a) is
 in very good agreement with Green & Gerrard’s Figure 7(b) ,  although the Reynolds
 number in Green & Gerrard’s experiment was 80 .  Three vortices are shown in both
 figures ,  while the two positive pressure regions shown display remarkable similarity .
 Green & Gerrard quote the pressure distribution near the cylinder derived numerically
 by Braza  et al .  (1986) at Re  5  100 .  Comparing Figure 14 with the Braza  et al .  results
 contained in Green & Gerrard’s figure 8 ,  we deduce that there exists considerable
 agreement between Figure 14(b ,  d) of the present investigation and Green & Gerrard’s
 figure 8(b ,  c) which refer to similar instants over a period .  A prominent discrepancy
 between Green & Gerrard’s experimental patterns and the results of both numerical
 solutions is that the low pressure region derived experimentally is very close to the
 wake axis ,  while in the computational results appears to be displaced laterally .  Possibly
 this is another ef fect of surface tension and flow over the top of the cylinder .

 6 . 2 .  S UPERPOSITION   OF  I SOBARS   ON  E QUIVORTICITY  L INES   AND  S TREAMLINES

 The isobars superimposed on the equivorticity lines throughout the solution domain
 are depicted in Figure 15 .  It is seen in Figure 15 that the points of maximum absolute
 value of vorticity coincide with the points of maximum absolute value of pressure ;  this
 observation does not apply exactly in the part of the wake close to the cylinder ,  where
 a small deviation of the point of maximum absolute pressure from that of maximum
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 Figure 12 .  Streakline pairs 3 – 8 and 5 – 6 superimposed on the equivorticity contours in the near wake
 separated by a time interval of  T  / 8 .
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 Figure 13 .  Pressure distribution throughout the domain at  t  5  0 .

 absolute vorticity is obvious .  It can be also seen from Figure 15 that the most distant
 points from the cylinder of the outermost equivorticity lines of each vortex lie on the
 minimum pressure lines which originate from the cylinder and extend as far as the
 outflow boundary .  This does not apply exactly to the negative vorticity vortex farthest
 from the cylinder ,  and it is possibly an ef fect of the truncation of the solution domain .
 An important conclusion from Figure 15 is that in the part of the wake close to the
 cylinder high pressures prevail where the two parts of an equivorticity line with end
 points on the cylinder which surrounds a vortex not completely detached approach
 each other ,  forming a necking .  This is further elucidated with reference to Figure 16 ,
 where the equivorticity lines are superimposed on the isobars near the cylinder over a
 half of a shedding period .

 In Figure 16(a) a positive pressure region has already developed in the position
 where the two opposite parts of the equivorticity lines have come closest above the
 cylinder ,  whereas a pressure hill starts to form at the equivorticity line necking
 underneath the cylinder ,  the value of the pressure contour being still negative .  In
 Figure 16(b) the high pressure region above the cylinder has increased in size while the
 pressure values in the inner contours have decreased ,  displaying a behaviour similar to
 a dif fusion process .  Moreover ,  the high pressure loop is not located at the point of
 equivorticity line necking any longer ,  but it has been convected downstream .  On the
 other hand ,  the high pressure region below the cylinder has increased in size and the
 pressure in the position of equivorticity line necking has become positive .  In Figure
 16(c ,  d) the high pressure region above the cylinder is convected downstream ,
 continuing to display the dif fusion behaviour .  The high pressure region below the
 cylinder increases continually ,  remaining attached to the point of equivorticity line
 necking .  In Figure 16(c) we can detect the final stage of a necking process ,  where the
 opposite points of an equivorticity line have coincided ,  dividing the line in two parts ;
 one attached to the cylinder and another forming a closed loop as part of the
 vortex-shedding process .  In Figure 16(d) the positive pressure region has been
 extended ,  and is not surrounded by negative pressure contours any longer .

 The isobars superimposed on the streamlines at  t  / T  5  0 are depicted in Figure 17 .  It
 can be noticed that the point of minimum pressure in the flow field lies on the
 separatrix which bounds the rotating bulk of fluid from the alleyways drawn across the
 wake from the lower part of the flow field .  Near the cylinder there exist two regions of
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(a) t /T = 0

(c) t /T = 2/8

(b) t /T = 1/8

(d) t /T = 3/8

 Figure 14 .  Isobars in the near wake separated by a time interval of  T  / 8 .

 locally higher pressure .  The first is located behind the top of the cylinder ,  where the
 alleyways drawn from the bottom come close to the cylinder ;  the second appears under
 the cylinder where the distance between the two opposite parts of an equivorticity line
 becomes minimum ,  as already explained .  Moreover ,  the pressure becomes minimum at
 the vortex centres ,  which are defined by the maximum lateral displacement of the
 stagnation streamline .

 7 .  FLUID VELOCITIES

 The fluid velocities are not computed directly from this stream function and vorticity
 numerical scheme ,  but they are calculated from the nodal values of the stream
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 Figure 15 .  Equivorticity contours shown together with the isobars at  t  5  0 .  The thick lines represent the
 equivorticity contours .

 function .  The calculation of the two components of the fluid velocity throughout the
 computational domain is necessary for the computation of pressure from Poisson’s
 equation .  Velocity traces in the streamwise direction were available from an ex-
 perimental investigation ,  and the comparison with the computed values would be a
 useful verification of the accuracy of the numerical solution .  The experiments were
 carried out in a water channel 60  cm wide by 70  cm deep ,  located in the Department of
 Aeronautics at Imperial College ,  London ,  as part of a more general project ,  also
 comprising velocity measurements in the wake of a vortex-excited cylinder .  The results
 for the oscillating cylinder case have been presented by Anagnostopoulos & Bearman
 (1992) and Anagnostopoulos (1994) .  Hot film anemometers were used for the
 measurement of the fluid velocity in the streamwise direction ,  at Re  5  115 .  The
 dif ference between the Reynolds number used in the computation and that of the
 experiment can be ignored from the following argument .  In the numerical solution ,  due
 to the proximity of the solid boundaries ,  the corrected freestream velocity from
 formula (1) is higher than the theoretical by a factor of 1 ? 018 ,  increasing the ef fective
 Reynolds number by the same ratio .  Moreover ,  the numerical model is two-
 dimensional while the vortices in the experiment are shed at a slanted angle ,  having as
 ef fect the reduction of the Strouhal number with respect to the parallel shedding value ,
 as will be explained later .  The combined ef fect of the two previous reasons is the great
 proximity of the Reynolds number in the computation and the experiment ,  which is
 verified from the shedding frequencies .  The computed shedding frequency was 6 ? 84  Hz
 while it was 7  Hz in the experiment ,  their dif ference being only 2% .

 The computed values of the streamwise fluid velocities superimposed on the
 measured ones at the same points of the flow field are depicted in Figure 18 .  The
 agreement between numerical and experimental values is very good ,  providing good
 evidence of the accuracy of the numerical solution .  The greatest discrepancy appears
 close to the cylinder ,  while farther in the wake the dif ference is so small that the
 computed traces are hardly distinguishable under the experimental velocity traces .  It
 seems therefore that the ef fects of the small dif ference between the Reynolds numbers
 in the computation and in the experiment are confined in a small region behind the
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(a) t /T = 0

(b) t /T = 1/8

 Figure 16 .  Equivorticity contours (thick lines) superimposed on the isobars (thin lines) in the near wake
 separated by a time interval of  T  / 8 .

 cylinder .  In all traces of Figure 18 the fundamental frequency at which the vortices are
 shed is detected ,  together with the first harmonic .  For the same longitudinal distance
 downstream ,  the ef fect of the first harmonic decreases with increasing distance from the
 wake axis .
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(c) t /T = 2/8

(d) t /T = 3/8
 Figure 16 .  ( Continued . )

 Traverses of the mean streamwise velocity over a period at three dif ferent locations
 along the wake axis are portrayed in Figure 19 .  An interesting feature of Figure 19 is
 that the velocity on the wake axis at  x  / d  5  9 ? 25 is higher than that at  x  / d  5  6 ,  but the
 velocity on the wake axis at  x  / d  3  14 ? 5 is lower than both previous values .  Figure 19
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 Figure 18 .  Computational (thin lines) and experimental (thick lines) streamwise velocities of the fluid as
 functions of time .  (a)  x / d  5  2 ? 70 , y  / d  5  0 ? 32 ;  (b)  x  / d  5  2 ? 70 , y  / d  5  0 ? 43 ;  (c)  x  / d  5  4 ? 90 , y / d  5  0 ? 17 ;

 (d)  x  / d  5  4 ? 90 ,   y  / d  5  0 ? 33 ;  (e)  x  / d  5  7 ? 50 , y  / d  5  0 ? 5 ;  (f)  x / d  5  7 ? 50 ,   y  / d  5  0 ? 75 .
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 Figure 19 .  Traverses of the average streamwise velocity of the fluid over a period :   — p — ,   x / d  5  6 ? 0 ;   — n — ,
 x  / d  5  9 ? 25 ;   — h — ,   x / d  5  14 ? 5 .

 confirms the continuity principle according to which high velocity near the wake axis
 has as ef fect the reduction of velocity at some lateral distance from the centreline of
 the wake and  y  ice  y  ersa .  The average velocities over one period on the wake axis are
 depicted in Figure 20 ,  which reveals that the minimum value occurs at  x  / d  5  1 ? 5 ;  then
 the mean velocity increases abruptly until it reaches its maximum value at  x  / d  5  8 ,  and
 decreases mildly until the outflow boundary is reached .  The r . m . s .  value of the
 streamwise velocity fluctuation  u 9  on the wake centre line is shown in Figure 21 .
 The point of the maximum  u 9 r . m . s .  is one of the criteria for the determination of the
 vortex formation length .  Figure 21 shows that the maximum r . m . s .  value of the  u
 velocity fluctuation occurs at  x  / d  5  3 ? 05 and is lower than one-tenth of the freestream
 velocity .

 The peak to peak fluctuation of the transverse fluid velocity over a cycle on the wake
 axis is displayed in Figure 22 .  It should be remembered that due to the symmetry of the
 mean flow with respect to the wake axis ,  the mean  y    velocity is zero .  Contrary to
 streamwise velocities ,  the transverse components do not appear frequently in the
 literature .  The computational work by Anagnostopoulos (1994) has shown that only
 the fundamental frequency is detectable in the lateral velocity trace over a period and
 the dif ferences at various points in the transverse direction are small .  Green & Gerrard
 (1993) quote that for Re  5  100 at  x  / d  5  1 ,  y  9 m a x / U  5  0 ? 23 .  This is exactly the value
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 Figure 20 .  Distribution of the average streamwise velocity over a period along the wake axis .

 derived from the present computation as follows from Figure 22 ,  considering that the
 y  9 m a x  values shown are peak to peak .  It should also be stressed that the maximum  y  9
 amplitude on the wake axis occurs at  x  / d  5  3 ? 05 ,  which is the location where the  u 9 r . m . s .
 over a period becomes maximum .
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 Figure 22 .  Distribution of the transverse velocity fluctuation over a period along the wake axis .

 8 .  PARAMETERS OF WAKE GEOMETRY

 The most important parameter of the vortex street wake geometry is the ratio of
 longitudinal to lateral spacing in the ‘‘stable region’’ ,  where the vortices shed from the
 two parts of the cylinder move along two parallel lines and their spacing ratio is
 constant as they are convected downstream .  Both the equivorticity and the filament
 lines (Figures 2 and 7) display a vortex street whose geometry remains constant as far
 as the outflow boundary .  The longitudinal spacing ,   a  ,  is 5 ? 437 d  and the lateral spacing ,
 b ,  is 1 ? 44 d ,  yielding a spacing ratio  b  / a  5  0 ? 264 ,  very close to von Ka ́  rma ́  n’s inviscid
 theory value ,  which is 0 ? 281 .  Schaefer & Eskinazi (1959) report at Re  <  100 that
 a  / d  5  5 ? 30   and  b  / d  5  1 ? 30 ,  which give a lower spacing ratio  b  / a  5  0 ? 24 .

 The convective velocity of the vortices  U c   is 0 ? 0595  m / s ,  the ratio  U c  / U  being 0 ? 901
 and the shedding frequency 6 ? 84  Hz ,  yielding a dimensionless Strouhal number 0 ? 1658 .
 Gerrard (1978) presented the Strouhal number as a function of the Reynolds number
 as obtained by numerous experimental investigations and fitted polynomials to the
 frequency variations .  Gerrard’s (1978) figure 3 reveals a remarkable scatter of
 Strouhal number values at this range of low Reynolds numbers .  The discrepancy of
 experimental data at this range of low Reynolds numbers was attributed to dif ferences
 in experimental conditions ,  accuracy of measurement and dif ferent shedding modes .
 Although the oblique shedding of vortices in the spanwise direction had been detected
 many years ago ,  it was not before 1989 when it was stated clearly by Williamson that
 the Strouhal number ,   S θ ,  for oblique shedding at angle  θ   is lower than that for parallel
 shedding  S o ,  and the oblique shedding data can be collapsed onto the parallel shedding
 by the transformation  S o  5  S θ  / cos  θ  .  More recently ,  Williamson (1991) ,  by placing end
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 plates on the cylinder inclined at a suitable angle ,  obtained parallel shedding in the
 spanwise direction .  The superposition of Strouhal number as a function of the
 Reynolds number for parallel shedding and for oblique shedding corrected from the
 transformation described before ,  displayed excellent agreement .  The Strouhal number
 value for parallel shedding at Re  5  106 according to Williamson (1991) was 0 ? 166 ,
 equal to the value of the present solution .

 8 . 1 .  T HE  F ORMATION  L ENGTH

 An important parameter of the vortex street wake geometry is the length of the
 formation region .  It is generally accepted that the end of the vortex formation region
 can be defined in the following mutually compatible ways .

 (1)  The minimum mean pressure on the wake axis (Roshko 1954) .
 (2)  The maximum intensity of the r . m . s .  value of the streamwise velocity fluctuation

 at twice the shedding frequency on the wake axis (Bloor & Gerrard 1966) .
 (3)  The minimum transverse spacing of the regions of maximum r . m . s .  streamwise

 velocity fluctuation (Schaefer & Eskinazi 1959 ;  Bearman 1965) .  At low Reynolds
 numbers ,  according to Schaefer & Eskinazi ,  this is equivalent to the point where the
 lateral displacement of the vortices becomes minimum .

 (4)  The maximum intensity of the r . m . s .  value of the longitudinal velocity fluctuation
 at the shedding frequency of f the wake axis (Bearman 1965 ;  Nishioka & Sato 1978) .

 (5)  The point closest to the cylinder at which irrotational fluid crosses the wake axis
 producing a velocity fluctuation characteristic of the vortex street (Bloor 1964) .

 The results of the formation length as a function of the Reynolds number found by
 dif ferent investigators are summarized by Green & Gerrard (1993) .  The main
 conclusions drawn from this superposition ,  is that ,  in the range of Reynolds numbers
 considered ,  the formation length decreases with the Reynolds number and there
 sometimes exist serious discrepancies between dif ferent investigations ,  even for the
 same definition of the formation length .  Bloor and Gerrard (1966) suggested intuitively
 that the end of the formation region may be the point at which the vortices are
 strongest .  Many years later Green & Gerrard (1993) confirmed from vorticity
 measurements in the near wake that the position of maximum vertex strength marks
 the end of the formation region .  The distance of the end of the formation region from
 the trailing edge of the cylinder at Re  5  100 was found by Green & Gerrard to be equal
 to 2 ? 65 cylinder diameters .

 The average pressure coef ficient over one shedding cycle on the wake axis is depicted
 in Figure 23 .  The minimum average pressure occurs at a distance  x  / d  5  1 ? 5 from the
 cylinder centre .  On the same figure is also plotted the pressure distribution on the wake
 axis at the instant  t  / T  5  0 ? 475 ,  which is the time when the minimum pressure appears
 on the wake axis over a shedding period .  The position of minimum pressure on the
 wake centreline occurs also at  x  / d  5  1 ? 5 from the cylinder centre ,  which is the reason
 for the low mean pressure over a period locally .  The isobars around the cylinder at
 t  / T  5  0 ? 475   are shown in Figure 24 .  The low pressure region is clearly seen below the
 cylinder in the form of closed loops ,  which have as ef fect the pressure drop on the wake
 axis .  It is also interesting to observe in Figure 23 the pressure minima at  t  / T  5  0 ? 475 ,
 which correspond to the longitudinal distance of the centres of the vortices ,  whereas
 the pressure maxima correspond to the ‘‘saddles’’ which connect neighbouring vortices
 of opposite sign .  The distribution of the r . m . s .  value of the streamwise velocity
 fluctuation along the wake axis has been presented in Figure 21 .  The maximum r . m . s .
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 value ,  equal to 9 ? 8% of the freestream velocity ,  occurs at  x  / d  5  3 ? 05 from the cylinder
 centre ,  substantially farther downstream from the point of minimum mean pressure .

 The lateral displacement of the vortices can be evaluated from the equivorticity lines .
 From the sequence of equivorticity lines of Figure 3 it is deduced that the minimum
 lateral displacement from the wake axis ,  equal to 0 ? 19 d ,  occurs at  t  / T  5  1 / 4 ,  the
 longitudinal distance of the vortex centre from the cylinder centre being 2 ? 38 d .  This is
 the time instant at which the lift force acting on the cylinder becomes minimum .
 Traverses of  u 9 r . m . s .  at some locations around the position of minimum lateral
 displacement of the vortices are depicted in Figure 25 .  It is clearly seen that the
 minimum distance of the maximum intensity of  u 9 r . m . s .  from the wake axis occurs at
 x  / d  5  2 ? 42 ,  almost coincident to the position of minimum lateral displacement of the
 vortices .  According to Schaefer & Eskinazi (1959) the position of maximum intensity of
 u 9 r . m . s .  at a specified longitudinal location is very close to the edge of the vortex core
 farthest from the wake centreline .  At  x  / d  5  2 ? 42 ,  a simple subtraction of the lateral
 vortex diaplacement (0 ? 19 d ) from the outer viscous core edge (0 ? 43 d ) yields the radius
 of the viscous core ,  equal to 0 ? 24 d .  It should be stressed that unlike in the experimental
 investigations where velocity can be measured at any point in the flow field ,  the
 calculation of the fluid velocities in a numerical solution is possible only at the nodal
 points of the computational grid network .  Figure 25 reveals the steep gradients of  u 9 r . m . s .
 around its maximum intensity ,  therefore the accuracy of measurement of this quantity
 across wake depends on the distance between adjacent nodal points in the cross-flow
 direction .

 For the determination of the point closest to the cylinder at which dyed or
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 Figure 24 .  Isobars in the near wake at  t  / T  5  0 ? 475 ,  and pressure contour numbers .

 irrotational fluid crosses the wake axis it is useful to refer to Figure 12 ,  where the
 streaklines are superimposed on the equivorticity lines .  In Figure 12(a) the streakline
 numbered 6 has just crossed the wake centreline ,  the distance between the trailing edge
 of the cylinder and the point of the streakline closest to the cylinder being one
 diameter ,  equal to the value quoted by Gerrard (1978) .  At the point where streakline 6
 crosses the wake axis ,  high vorticity prevails ,  while the sequence of frames in Figure 12
 shows the dye approaching from the downstream direction and not from the upper
 side ,  due to the curvature of the streakline .  It should also be recalled that the streakline
 waviness marking the first appearance of the vortices occurs at a distance equal to 1 ? 5
 diameters from the cylinder centre .  Figure 12(a) shows clearly the indentation of
 streakline 5 below the cylinder being at the same distance from the cylinder centre as
 the point where streakline 6 crosses the wake centre line closest to the cylinder .
 Streakline number 8 has just crossed the wake axis in Figure 12(b) .  The distance at
 which streakline 8 crosses the wake axis closest to the cylinder from the cylinder centre
 is 3 ? 1 cylinder diameters .  Moreover ,  although the vorticity at the point where streakline
 8 crosses the wake centreline is low ,  the fluid is not absolutely irrotational .  Irrotational
 fluid crosses the wake axis closest to the cylinder in Figure 12(d) ,  at a distance equal to
 4 cylinder diameters from the cylinder centre .  It seems therefore that the point closest
 to the cylinder at which dyed fluid crosses the wake axis indicates only the beginning of
 shedding ,  as reported also by Green & Gerrard (1993) .

 From the foregoing discussion it is evident that we should distinguish between two
 dif ferent quantities ,  the length of the first appearance of the vortices and the formation
 length .  The manifestation of the first appearance of the vortices at a distance equal to



 P .  ANAGNOSTOPOULOS 68

0.35

1.00

u'r.m.s./U

y/
d 0.50

0.90

0.80

0.70

0.60

0.40

0.30

20

10

0.05 0.15 0.250

 Figure 25 .  Traverses of the r . m . s .  streamwise velocity over a period :   n ,   x  / d  5  2 ? 26 ;   — e — , x  / d  5  2 ? 42 ;
 — h — , x  / d  5  2 ? 58 .

 1 ? 5 cylinder diameters from the cylinder centre is the accumulation of vorticity of
 approximately constant magnitude accompanied by a wave locally in a streakline .
 Moreover ,  this is the point where the mean streamwise velocity and the mean pressure
 over a shedding period become minima .  Incidentally ,  this is the distance where dyed
 fluid emanating near the cylinder crosses the wake axis for the first time .  The formation
 length which marks the end of the formation region is the distance from the cylinder
 centre where the strength of the vortices becomes maximum ,  as it can be clearly seen
 by recalling Figure 6 .  This is the point where the r . m . s .  value of the streamwise velocity
 on the wake axis becomes maximum ,  and where the fluctuation of the transverse
 velocity on the wake axis also becomes maximum .  The end of the formation region was
 found 3 ? 05 cylinder diameters from the cylinder centre ,  very close to the value reported
 by Green & Gerrard at Re  5  100 .  The sitation when the vortex centre has just
 exceeded the formation length is depicted in Figure 16(a) .  The vortex shedding from
 the bottom of the cylinder has been separated from the vorticity remaining close to the
 cylinder ,  whereas the equivorticity contour stranding the vortex exhibits a narrowing
 which determines the vortex boundary .  The local increase of pressure at the point of
 vortex boundary is also visible .  In Figure 16(d) the centre of the vortex shedding from
 the top of the cylinder has not reached the formation length yet .  The development of a
 higher pressure region is visible ,  but it is still displaced towards the cylinder and does
 not define the vortex boundary .  Thus the definition of the formation length is further
 supported from flow visualization .  When the centre of a vortex reaches the formation
 length ,  it displays the characteristics of a fully formed vortex .  The vorticity and pressure
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 distribution define in a certain way its boundaries from the vorticity remaining near the
 cylinder .

 8 . 2 .  V ELOCITY   AND  D ISPLACEMENT   OF NEWLY  F ORMED  V ORTICES

 The vortices after formation accelerate continuously until they acquire a constant
 convective velocity .  Gerrard (1978) discovered experimentally a transition at Re  <  100
 in the time required for a vortex to obtain the constant velocity .  At Re slightly lower
 than 100 ,  the time required by a vortex from its first appearance to reach constant
 velocity was approximately half of a shedding period ,  while at Re just over 100 it was
 increased to about one period .  At Re  <  100 the time during which the vortex
 accelerated was very scattered ,  indicating that the transition is not well defined .  There
 also exists a transition in the distance moved by the vortex from its first appearance to
 the position where its velocity becomes constant at Re around 100 ,  associated with the
 time interval of the acceleration .  Eaton (1987) calculated the velocity of the vortices as
 they move away from the cylinder from the streakline configuration .  In the present
 context the equivorticity lines were used for the determination of the centres of the
 vortices .  The equivorticity lines separated by a time interval equal to  T  / 100 were
 generated and the displacement of the vortex under consideration was calculated ,  while
 its division by this interval yielded the instantaneous vortex velocity .  As  t  5  0 the time
 of the first appearance of the vortices was considered .  The vortex velocity ,   V ,
 normalized by the constant convective velocity ,   U c  ,  as a function of time is depicted in
 Figure 26 .  It is recalled that  U c   is 90 ? 2% of the freestream velocity ,   U .  The vortex
 velocity starts from a value as low as 20% of  U c   and becomes equal to the constant
 velocity  U c   after 1 ? 3 shedding periods .  An interesting observation is that ,  in the interval
 between 25% and 45% of a shedding period ,  the velocity ,   V  ,  remains constant .  From
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 Figure 26 .  Time-dependent convective velocity of a vortex .
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 Figure 27 it is deduced that the vortex acquires constant velocity at a distance  x y   equal
 to 5 ? 6 diameters behind the cylinder centre ,  or 4 ? 2 diameters from its first appearance ;
 the distance moved by the vortex from its first appearance to the position where its
 velocity becomes constant corresponds to 75 ? 5% of the longitudinal spacing of vortices .
 The result obtained herein corresponds to the highest limit of the values quoted by
 Gerrard (1978) .

 9 .  CONCLUSIONS

 The finite element method was used for the solution of the two-dimensional
 Navier-Stokes equations at Re  5  106 .  Computer-aided flow visualization techniques
 were employed for the generation of streamlines ,  equivorticity lines ,  filament lines and
 isobars .  For a better interpretation of the flow characteristics ,  dif ferent flow visualiza-
 tion patterns obtained at the same time instant were superimposed on the same
 diagram .  The superposition of equivorticity lines on the streamline pattern gives insight
 to the vortex splitting behind the cylinder due to the alleyways drawn across wake ,
 while the presentation of equivorticity lines and isobars on the same diagram reveals
 the formation of pressure hills at the vortex boundaries .  The geometry of the vortex
 street wake derived from the present numerical study agrees well with flow visualiza-
 tion results of numerous experimental investigations .  The streaklines which originate
 close to the wake axis and are caught in the recirculation region appear to have
 substantial gaps ,  while ,  to a great extent ,  the sequence of their constitutive points is
 erratic .

 The present computational solution confirmed the result derived experimentally by
 Green & Gerrard (1993) ,  that the end of the formation region coincides with the
 position of the vortex centre at which the vortex strength becomes maximum .  This is
 the location where the intensity of the r . m . s .  streamwise velocity fluctuation and the
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 fluctuation of the transverse velocity on the wake axis acquire maximum values .  It is
 remarkable that ,  when the vortex centre reaches the formation length ,  the flow
 visualization patterns depict the initial stage of a fully formed vortex .  The point of the
 first appearance of the vortices can be characterized as the position where the mean
 longitudinal velocity and the mean pressure on the wake axis become minimum .  The
 position of the minimum transverse spacing from the wake axis of the maximum r . m . s .
 streamwise velocity fluctuation coincides with that corresponding to the minimum
 lateral spacing of the vortices .  The exact calculation of the amount of circulation shed
 into the wake during one period verified the validity of the approximate formula
 K s  5  1 – 2 U 2 (1  2  C p b ) ,  provided that a correct value of the base pressure coef ficient ,   C p b  ,
 is used .  The vorticity balance in the laminar wake reveals that 70% of the vorticity shed
 is found in the vortices .  Finally ,  the verification of the criteria for the formation length
 and for the first appearance of the vortices reported herein at dif ferent Reynolds
 numbers and other cylindrical cross-sections remains an interesting subject for further
 research .
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